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ABSTRACT

The NASA OAST Propulsion, Power, and Energy Division supports an electric
propulsion program aimed at providing benefits to a broad class of missions.
Concepts which have the potential to enable or significantly benefit space
exploration apd exploitation are identified and advanced toward applications
in the near and far term. This paper summarizes recent program progress in
mission/system analyses; in electrothermal, electrostatic, and electromagnetic
propulsion technologies; and in propulsion/spacecraft integration.

INTRODUCTION

Prospects now appear high for broad acceptance and application of electric
propulsion systems (ref. 1). Low power, pulsed plasma thrusters are utilized
for precise orbit control on Navy NOVA spacecraft (ref. 2), and 500-W class
electrothermal (resistojet) hydrazine thrusters are used on geosynchronous com-
munications satellites (ref. 3). Electrostatic (ion) propulsion is planned
for its first operational use on the Japanese Engineering Test Satellite VI
(ref. 4). The successful operation of these systems has led to increased user
confidence, and further operational use of electric propulsion appears
imminent.

Electrothermal propulsion is currently performing North-South station-
keeping (NSSK) on a number of geosynchronous satellites and will be used for
the space station and man-tended platforms (ref. 5). The electrothermal auxil-
iary propulsion program includes the development of resistojets for high spe-
cific impulse and for long life compatibility with multiple propellants.
Arcjets are being developed to provide increased 1ife for high power geosyn-
chronous satellites. Power electronics technology is required for all of
these concepts and is, therefore, an integral part of the program, as it is
also in the electrostatic and electromagnetic areas.



The National Commission on Space advocated a number of challenging mis-
sions, such as a return to the Moon, unmanned and manned exploration of Mars
and its moons, and unmanned scientific exploration of the rest of the solar
system (ref. 6). Many of these missions would be enhanced, and some would be
enabled by high specific impulse electric propulsion. To perform the challeng-
ing future missions, high power and high specific impulse systems will be
required. Candidate systems include electrostatic (ion) and electromagnetic
(magnetoplasmadynamic or MPD) engines, with electrodeless approaches represent-
ing a longer term possibility. To perform these challenging future missions,
the total impulse capability must be advanced from the currently demonstrated
106 N-s for both ion and MPD engines to at least 108 N-s. There are also many
potential applications for high Isp electric propulsion at the tens of kilo-
watts available from large solar power systems. For example, a USAF study has
shown a high potential payoff for a solar electric orbit transfer vehicle for
the delivery of satellite constellations to their operational orbits (ref. 7).

MISSION AND SYSTEM ANALYSES

Mission analyses covering spacecraft from small, solar-powered (refs. 8
and 9) to large, megawatt nuclear-powered spacecraft (refs. 10 to 14) show
enhancing to enabling levels of capability for exploration of the planets and
beyond. The Lunar Get Away Special (LGAS) study (ref. 8) considered a tiny
180 kg demonstration spacecraft, with one instrument and a 1.5 kW solar array,
using ion propulsion for transportation from low Earth orbit (LEO) to lunar
orbit. The LGAS mission would carry one instrument, nominally an Apollo gamma
ray spectrometer, and would carry 36 kg of xenon propellant in a spacecraft
that fits within a Get Away Special (GAS) canister and has a total wet mass of
149 kg. The Thousand Astronomical Unit Explorer (TAU) study considered a
multimegawatt nuclear-powered electric propulsion system to reach 1000 au in
50 years (ref. 10). Both of these spacecraft accomplish the mission propulsion
with a minimum propellant mass and, thereby, maximize the science payloads at
the destinations. The Comet Rendezvous Asteroid Flyby (CRAF) mission was stud-
ied with an ion propulsion system added to a spacecraft and mission designed
initially for chemical propulsion. Even though the mission and science package
were not optimized for use of electric propulsion, the net effect was to reduce
trip time by three years and increase the launch mass margin by 600 kg
(ref. 13).

An ion thruster system for planetary missions has recently been designed
and is undergoing engineering tests (ref. 15). The focus of these activities
is on reduction of system complexity, with the goal of reducing the cost of
development and flight qualification. Proposed design changes-are also evalu-
ated in terms of mission impact (ref. 16).

A range of solar- and nuclear-powered Earth orbital missions have been
studied and show cost/mass reduction benefits (refs. 7, 17 and 18). For auxil-
fary propulsion, both ion engines (ref. 17) and arcjets (ref. 18) show mission
benefits by extending the life of communications satellites.



ELECTROTHERMAL

NASA's electrothermal auxiliary propulsion technology program (ref. 19)
includes the development of options for high specific impulse (arcjet), and
high thrust-to-power ratio (resistojets). This paper will discuss progress
(primarily since publication of ref. 19) on hydrazine arcjets for Earth-
orbital satellites and platforms with sufficient power, high-performance
storable propellant resistojets for power limited applications, water resis-
tojets for man-tended platforms, and multi-propellant resistojets for the
space station.

High Performance Resistojets

To advance storable propellant resistojets beyond the current state-of-
the-art 300-sec mission average specific impulse (ref. 20), several efforts
have been undertaken. Improved heat exchanger performance, longer-life higher-
temperature heaters (ref. 21), and improved nozzle performance (refs. 22 and
23) are being sought. The importance of high-quality facilities for evaluating
resistojet performance has been demonstrated (ref. 24). It has been shown
that increasing facility background pressure increases the convective heat
losses from the engine, resulting in decreased performance, as shown in
figure 1.

Water Resistojets

Interest in water resistojets developed as a spin-off to the space station
multi-propellant resistojet development. For man-tended, shuttle-serviced
platforms such as the Industrial Space Facility (ISF), ease and safety of pro-
pellant resupply and ground handling operations are critical issues, which
leads to the interest in water as a propellant. HWith a resistojet capable of
steam operation already being developed for the space station, water resisto-
jets were baselined for the ISF (ref. 25). This necessitated the development
of a zero-gravity steam generator when it was determined that available steam
generators, such as that developed for the Manned Orbiting Laboratory, did not
perform stably and reliably and that operation of the space station resistojet
with 1iquid water feed could be quite unstable (ref. 26). A cyclone steam gen-
erator (fig. 2) was developed after evaluation of a number of boiler concepts
studied for space power system applications. Further development of this con-
cept led to an integrated vaporizer/resistojet utilizing a single heater as
described more fully in reference 27. This concept is shown in figure 3; the
liquid water is swirled to the outer wall and boiled by heat radiated from the
central heater which also heats the resistojet by conduction. Losses are
reduced since the outer wall operates at temperatures below saturation. This
design also overcomes the many stability and phase separation problems typi-
cally encountered in zero-gravity boilers.

Multipropellant Resistojets

As previously mentioned, multipropellant resistojets have been baselined
on the space station. The requirements for space station propulsion are quite
different from most other propulsion applications in that long 1ife and inte-
gration features are much more important than performance (refs. 28 to 30).



Utilizing space station wastes as propellant minimizes resupply requirements,
and may eliminate the need to return some wastes. Grain-stabilized platinum
was selected as the thruster material following a series of propellant/
material compatibility tests (refs. 31 and 32) and confirmed by a 2000-hr cy-
clic 1ife test of a laboratory model thruster (ref. 33). Performance charact-
eristics on a wide range of possible propellants have been obtained on an engi-
neering model thruster (ref. 26), and long term life tests are underway with
6100 hr and 83 thermal cycles demonstrated to date. A power controller was
developed to enable the thruster to operate on the high frequency power to be
provided on the space station (ref. 34). To facilitate the integration of

this technology on the space station, propellant and feed systems options were
assessed (ref. 35 and interfaces defined (ref. 36). The exhaust plumes of

the thrusters are of concern because of potential effects on sensors and exper-
iments and potential attenuation of signals propagating through the plume, as
discussed in a later section.

Arcjets

Arcjets offer a very significant (greater than 50 percent) performance
increase over state-of-the-art auxiliary propulsion, and thereby provide sig-
nificant mass savings for spacecraft with sufficient power. Over the past few
years, arcjet technology has advanced from its status in the late 1960's, when
work was terminated due to insufficient power availability on spacecraft and
lack of firm mission requirements, to its present near flight-ready status.
Because of the broad range of applications and the potential benefits for a
number of NASA and USAF missions, the Air Force Astronautics Laboratory (AFAL)
and the NASA Lewis Research Center (NASA Lewis) have agreed to pursue a joint
research and technology program (ref. 37). The main focus of the NASA program
is on low power thrusters for stationkeeping applications. The power available
for auxiliary propulsion on communications satellites is currently limited to
about 0.5 to 3.0 kW. Arcjet thrusters operated with storable propellants in
that power range should provide significant benefits to the user community.

The simplicity of the arcjet system and its elements of commonality with
state-of-the-art hydrazine resistojet systems offer a relatively low risk tran-
sition to significantly enhanced performance levels. Successful performance

of arcjets in such applications should validate performance and integration
approaches and increase the likelihood that the large benefits of arcjets, and
other electric thrusters, may be realized for many other missions.

The modern (1980's) arcjet program was initiated with a 1-kW arcjet, origi-
nally designed in the late 1960's for a short flight test using hydrogen pro-
pellant (ref. 38). Rapid erosion was observed, and stability problems 1imited
operations, but the performance results indicated that beneficial performance
levels could be obtained with storable propellants. Stability and power proc-
essor integration issues have been successfully addressed (refs. 39 and 40).
Start up and transition to steady-state operation are now repeatable and
nondamaging (refs. 41 and 42). To demonstrate starting reliability and the
potential for pulsed mode operation, over 11 000 pulses (3 sec on and 3 sec
off) were demonstrated (ref. 43). Life issues have also been successfully
addressed, (refs. 41 and 42) indicating the potential for necessary mission
life. A specific impulse as high as 729 sec was obtained with hydrazine in a
conventional constricted arc design, (ref. 44) and other tests with mixed gas
propeilants (ref. 45) confirm the high specific impulse potential of this



approach. However, the results from testing an approach incorporating a mix-
ing chamber intended to improve efficiency gave relatively poor performance
(ref. 46). Since the performance and 1ife of hydrazine propulsion systems,
including arcjets, are dependent on the catalytic gas generator, an experiment
was conducted to determine the variation in output composition as a function
of time (ref. 47). 1In 28 hr of testing over a 3 month interval, the catalyst
bed efficiency increased rapidly with increasing temperature (which is, in
turn, flow dependent) for temperatures below 450° C and remained essentially
constant, with about 11 percent NH3 at higher temperatures.

Based on these successes, a long-term, autonomous cyclic life test was
initiated (ref. 48) and recently successfully completed (ref. 49). Over 500
cycles of 2 hr duration were performed at a specific impulse and power level
of about 450 sec and 1.2 kW, respectively. The life test thruster is shown in
figure 4, and its specific impulse versus thrust-to-power ratio characteris-
tics are shown in figure 5. Typical performance histories of several cycles
are shown in figure 6. No significant changes were seen throughout the test.
At the design current of 11 A, the specific impulse variation was less than
2 percent over the duration of the test, while the voltage rose gradually to
110 percent of its original 101 V. The test was voluntarily terminated with
the total firing time simulating 20 years of service on a communications satel-
lite. The electrodes were still in excellent condition (fig. 7), and a cath-
ode mass loss of only 6 mg was measured.

Advanced Electrodeless Concepts

Electrodeless thruster concepts offer the potential for very high energy
coupling efficiency, and are, therefore, of great interest for high power sys-
tems (refs. 50 to 56). Electromagnetic energy is applied at radio through
microwave frequencies to provide electrothermal, cyclotron resonance, or
ion-cyclotron resonance heating of the propellant. Limitations imposed by
electrode erosion in other electric thrusters may be avoided. NASA is evaluat-
ing the microwave electrothermal thruster, which absorbs the applied power in
a plasma discharge and heats the gas propellant by high pressure thermaliza-
tion. Advantages include high efficiency power absorption and conversion;
high power density; and external control of discharge location, shape, and vol-
ume.

ELECTROSTATIC

Electrostatic (ion) propulsion is the highest specific impulse option with
sufficient technical maturity to be considered for near-term applications.
Benefits have been identified for both primary (refs 7, 9, 13 and 14) and aux-
iliary propulsion (refs. 4, 17 and 57). The technology program is, therefore,
focused on power levels appropriate for both solar- (primary and auxiliary)
and nuclear-powered (primary) applications (refs. 17 and 58 to 65).

An extended test of 567 hr was conducted on a 30-cm diameter, divergent-
field ion thruster (fig. 8) using xenon propellant at a 10 kW power level
(ref. 58). Primary wear mechanisms were identified so that long-life, high
power engines can be developed. Three mechanisms were identified: nonuniform
erosion on the upstream side of the baffle; oxidation, deformation, and crack-
ing of the tantalum cathode tube, probably due to cold startup, but possibly
related to the high partial pressure of water in residual facility gases; and



charge exchange ion erosion of the accelerator grid. Screen grid erosion,
which was the life-limiting mechanism for 3 kW mercury ion thrusters, was
reduced greatly (fig. 9). Based on the experimentally obtained erosion data,
the screen grid l1ife is projected to be over 7000 hr. Addition of one percent
nitrogen to the xenon propellant has been shown to reduce erosion by a factor
of four (ref. 65).

Scaling of ion engines to larger size is desirable for nucliear class power
levels, and preliminary results have been obtained (ref. 59). Laboratory and
engineering model 30-cm diameter thrusters were operated with xenon propellant
over a power range from 2 to 20 kW. Preliminary performance results were also
obtained for laboratory model 50-cm diameter cusp- and divergent-field thrus-
ters operating with both 30- and 50-cm diameter ion optics over the 10 kW
range. These results represent the first output of a program aimed at
developing scaling technology and, ultimately, nuclear class ion engine
systems.

ELECTROMAGNETIC

The electromagnetic propulsion effort is focused primarily on magneto-
plasmadynamic (MPD) thrusters. Both self-field and applied-field (fig. 10)
thrusters are being investigated (refs. 66 to 73). Much of the recent
research into the fundamentals of self-field thrusters has been conducted
using pulsed-mode rather than continuous operation (refs. 66 to 68). A summary
has recently been completed on the performance and life characteristics of
quasi-steady state and continuous MPD thrusters (ref. 69). High efficiency is
required and values up to 0.43 and 0.69 have been reported for hydrogen and
lithium propellants, respectively. Other propellants show efficiencies in the
0.10 to 0.38 range at 1000 to 4500 sec specific impulse. High thermal effi-
ciencies at megawatt power levels in pulsed operation and low electrode erosion
rates have recently been reported, indicating that MPD thrusters may be devel-
oped with sufficient 1ife and performance for extended, very high power mis-
sions. High power, continuous operation has recently been demonstrated at
NASA Lewis, where an MPD arc thruster has been operated at over 130 kW in both
self- and applied-field (0.3 T) modes (fig. 11).

PROPULSION/SPACECRAFT INTEGRATION

Because of the differences between electric and chemical propulsion sys-
tems, there are a number of integration issues which must be resolved to the
satisfaction of potential users, such as electromagnetic interference (EMI)
and plume effects. Plume characteristics differ significantly from those of
chemical engines in that the exhaust may be slightly to highly ionized and
Reynolds numbers are low.

For the multipropellant resistojets baselined on the space station, the
exhaust plumes of thrusters are of concern because of potential effects on sen-
sors and experiments and potential attenuation of signals propagating through
the plume. Analytical and experimental techniques have been developed,

(ref. 74) and a preliminary assessment made of the effect of nozzle geometry
on plume characteristics (ref. 75). The effect of a plume shield has been
evaluated and found to be small (ref. 76).



After the successful demonstration of arcjet performance and life, it was
appropriate to initiate an investigation of those thruster/spacecraft integra-
tion characteristics required to enable the use of arcjets on operational
spacecraft. A prefight development effort has been initiated to minimize the
risks associated with flight testing of an arcjet to facilitate the achievement
of operational status. Areas of concern are thermal loading, exhaust plume
interaction, and both conducted and radiated electromagnetic interference.
Thermal loading is a function of individual system design and plume character-
istics. Electromagnetic interference (EMI) concerns are being addressed in
ground testing, but experience based on space tests with more highly ionized
plumes indicates that any problems should be manageable (ref. 77). Experiments
have been conducted in a large vacuum facility to determine arcjet plume plasma
characteristics using Langmuir probes, and the plumes were found to be less
than one percent ionized (refs. 78 and 79). Based on these results, an analyt-
ical study has been conducted of the communications impact of a low power arc-
jet thruster by modeling the plume as a plasma slab. Except for propagation
paths which pass very near the arcjet thruster, the impacts of transmission
appear to be minimal (ref. 80).

CONCLUDING REMARKS

With the ongoing successful operational use of low power systems, applica-
tions of electric propulsion are growing. For example, the space station has
baselined multipropellant resistojets for drag makeup. The NASA electric pro-
pulsion program is advancing the technology base for electrothermal, electro-
magnetic, and electrostatic propulsion systems to support these developments,
and is, furthermore, addressing spacecraft integration issues to facilitate
applications of electric propulsion.
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® VORTEX BOILER CONCEPT DEFINED AND TESTED

® GAS/LIQUID SEPARATION ENHANCED
® EFFICIENT HEAT TRANSFER

® STABLE HIGH-QUALITY STEAM GENERATION DEMONSTRATED
® MINIMUM SENSITIVITY TO ORIENTATION (*G*) EFFECTS

e FIRST OBSERVATION OF CORRECTED-THRUST DEPENDENCE ON
FACILITY PRESSURE
e STANDARD PRESSURE-AREA CORRECTION NOT ADEQUATE FOR
HEATED FLOW
o PERFORMANCE DEGRADATION DUE TO THERMAL LOSSES
INDUSTRY INCORPORATING THERMAL CORRECTIONS IN PER-
FORMANCE EVALUATIONS
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FIGURE 1. - FACILITY EFFECTS ON RESISTOJET PERFORMANCE. FIGURE 2. - CYCLONE STEAM GENERATOR.
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FIGURE 8. - 10 kW XENON THRUSTER.
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FIGURE 7. - ELECTRODES FROM LIFE TEST.
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(a) UPSTREAM SIDE. BEFORE TEST. (b) UPSTREAM SIDE, AFTER TEST.

(c) UPSTREAM SIDE., AFTER TEST. (d) DOWNSTREAM SIDE. AFTER TEST.
FIGURE 9. - SCREEN GRID.
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